The Requirement of L-Type Voltage-Dependent Calcium Channel (L-VDCC) in the Rapid-Acting Antidepressant-Like Effects of Scopolamine in Mice
نویسندگان
چکیده
Background Previous studies have shown that a low dose of scopolamine produces rapid-acting antidepressant-like actions in rodents. Understanding the mechanisms underlying this effect and the dose-dependent variations of drug responses remains an important task. L-type voltage-dependent calcium channels were found to mediate rapid-acting antidepressant effects of certain medications (e.g., ketamine). Therefore, it is of great interest to determine the involvement of L-type voltage-dependent calcium channels in the action of scopolamine. Methods Herein, we investigated the mechanisms underlying behavioral responses to various doses of scopolamine in mice to clarify the involvement of L-type voltage-dependent calcium channels in its modes of action. Open field test, novel object recognition test, and forced swimming test were performed on mice administered varied doses of scopolamine (0.025, 0.05, 0.1, 1, and 3 mg/kg, i.p.) alone or combined with L-type voltage-dependent calcium channel blocker verapamil (5 mg/kg, i.p.). Then, the changes in brain-derived neurotrophic factor and neuropeptide VGF (nonacronymic) levels in the hippocampus and prefrontal cortex of these mice were analyzed. Results Low doses of scopolamine (0.025 and 0.05 mg/kg) produced significant antidepressant-like effects in the forced swimming test, while higher doses (1 and 3 mg/kg) resulted in significant memory deficits and depressive-like behaviors. Moreover, the behavioral changes in responses to various doses may be related to the upregulation (0.025 and 0.05 mg/kg) and downregulation (1 and 3 mg/kg) of brain-derived neurotrophic factor and VGF in the hippocampus and prefrontal cortex in mice. We further found that the rapid-acting antidepressant-like effects and the upregulation on brain-derived neurotrophic factor and VGF produced by a low dose of scopolamine (0.025 mg/kg) were completely blocked by verapamil. Conclusions These results indicate that L-type voltage-dependent calcium channels are likely involved in the behavioral changes in response to various doses of scopolamine through the regulation of brain-derived neurotrophic factor and VGF levels.
منابع مشابه
Involvement of voltage-dependent calcium channels in synaptic plasticity of the rat visual cortex
In this study, involvement ofvoltage-dependent calcium channels in LTP of responses of rat visual cortex slices was analyzed. Field potentials including EPSP1 and EPSP2 from layers II/III were recorded through stimulation of layer IV. Whereas nifedipine, a L-type calcium channel blocker (L-VDCC), did not considerably affect the LTP of responses, but Ni2+, a relatively selective blocker of T-typ...
متن کاملInvolvement of voltage-dependent calcium channels in synaptic plasticity of the rat visual cortex
In this study, involvement ofvoltage-dependent calcium channels in LTP of responses of rat visual cortex slices was analyzed. Field potentials including EPSP1 and EPSP2 from layers II/III were recorded through stimulation of layer IV. Whereas nifedipine, a L-type calcium channel blocker (L-VDCC), did not considerably affect the LTP of responses, but Ni2+, a relatively selective blocker of T-typ...
متن کاملEffects of L-type Calcium Channel Antagonists Verapamil and Diltiazem on fKv1.4ΔN Currents in Xenopus oocytes
The goal of this study was to determine the effects of the L-type calcium channel blockers verapamil and diltiazem on the currents of voltage-gated potassium channel (fKv1.4ΔN), an N-terminal-deleted mutant of the ferret Kv1.4 potassium channel. Measurements were made using a two electrode voltage clamp technique with channels expressed stably in Xenopus oocytes. The fKv1.4ΔN currents displayed...
متن کاملEffects of L-type Calcium Channel Antagonists Verapamil and Diltiazem on fKv1.4ΔN Currents in Xenopus oocytes
The goal of this study was to determine the effects of the L-type calcium channel blockers verapamil and diltiazem on the currents of voltage-gated potassium channel (fKv1.4ΔN), an N-terminal-deleted mutant of the ferret Kv1.4 potassium channel. Measurements were made using a two electrode voltage clamp technique with channels expressed stably in Xenopus oocytes. The fKv1.4ΔN currents displayed...
متن کاملBDNF Release is Required for the Behavioral Actions of Ketamine
BACKGROUND Recent studies demonstrate that the rapid antidepressant ketamine increases spine number and function in the medial prefrontal cortex (mPFC), and that these effects are dependent on activation of glutamate α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptors and brain-derived neurotrophic factor (BDNF). In vitro studies also show that activation of AMPA receptors sti...
متن کامل